References to Retinoids and

Metabolic Disorders or


J Mol Med (Berl). 2016 Jun 6. [Epub ahead of print]

A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies.


• Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.


Retinoic acid; Retinoic acid receptor β2; Steatosis; Stellate cells

PMID:27271256[PubMed - as supplied by publisher]

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8907-12. doi: 10.1073/pnas.1404828111. Epub 2014 Jun 3.

Combination of bexarotene and the retinoid CD1530 reduces murine oral-cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide.


We investigated the effects of bexarotene (a retinoid X receptor agonist), CD1530 (a retinoic acid receptor γ selective agonist), and the combination of these two drugs for the prevention of oral carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in a mouse model of human oral-cavity and esophageal squamous-cell carcinoma previously generated in our laboratory. We observed decreased numbers of neoplastic tongue lesions and reduced lesion severity in the 4-NQO plus CD1530 (4N+C) and 4-NQO plus bexarotene plus CD1530 (4N+B+C) groups compared with the 4-NQO group. RNA-Seq analyses showed increases in transcripts in cell proliferation/cell cycle progression pathways in the 4-NQO vs. the untreated group. In addition, β-catenin and matrix metallopeptidase 9 (MMP9) protein levels and reactive oxygen species (ROS), as assessed by 4-hydroxynonenal (4-HNE) staining, were elevated in tongue tissues 17 wk after the termination of the 4-NQO treatment. The 4N+B, 4N+C, and 4N+B+C groups showed dramatically lower levels of β-catenin, MMP9, and 4-HNE staining compared with the 4-NQO group. The major reduction in 4-HNE staining in the retinoid treatment groups suggests a novel mechanism of action, reduction of ROS, by which bexarotene and CD1530 inhibit carcinogenesis.


cancer prevention; oral cancer; retinoic acid receptor gamma agonist; retinoid X receptor; tongue squamous cell carcinoma

J Cell Physiol. 2011 Feb;226(2):322-30. doi: 10.1002/jcp.22417.

Retinoids regulate stem cell differentiation.


Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.

© 2010 Wiley-Liss, Inc.



Annu Rev Pathol. 2011;6:345-64. doi: 10.1146/annurev-pathol-011110-130303.

Retinoids, retinoic acid receptors, and cancer.


Retinoids (i.e., vitamin A, all-trans retinoic acid, and related signaling molecules) induce the differentiation of various types of stem cells. Nuclear retinoic acid receptors mediate most but not all of the effects of retinoids. Retinoid signaling is often compromised early in carcinogenesis, which suggests that a reduction in retinoid signaling may be required for tumor development. Retinoids interact with other signaling pathways, including estrogen signaling in breast cancer. Retinoids are used to treat cancer, in part because of their ability to induce differentiation and arrest proliferation. Delivery of retinoids to patients is challenging because of the rapid metabolism of some retinoids and because epigenetic changes can render cells retinoid resistant. Successful cancer therapy with retinoids is likely to require combination therapy with drugs that regulate the epigenome, such as DNA methyltransferase and histone deacetylase inhibitors, as well as classical chemotherapeutic agents. Thus, retinoid research benefits both cancer prevention and cancer treatment.

PMID:  21073338   [PubMed - indexed for MEDLINE]

Diabetes Obes Metab. 2016 Feb;18(2):142-51. doi: 10.1111/dom.12590. Epub 2015 Dec 23.

Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis.



To investigate the effects of specific retinoic acid receptor (RAR) agonists in diabetes and fatty liver disease.


Synthetic agonists for RARβ2 were administered to wild-type (wt) mice in a model of high-fat-diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D).


We show that administration of synthetic agonists for RARβ2 to either wt mice in a model of HFD-induced T2D or to ob/ob and db/db mice reduces hyperglycaemia, peripheral insulin resistance and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation and oxidative stress in the liver, pancreas and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase, and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle.


Collectively, our data show that orally active, rapid-acting, high-affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis.

© 2015 John Wiley & Sons Ltd.

KEYWORDS:  antidiabetic drug; fatty liver; insulin resistance; renal steatosis; retinoids; type 2 diabetes

Diabetes Manag (Lond). 2015;5(5):359-367.

Vitamin A: a missing link in diabetes?


Vitamin A has a critical role in embryonic development, immunity and the visual cycle. In recent years, evidence has demonstrated that vitamin A can also regulate metabolic pathways implicated in the pathogenesis of obesity and diabetes. This has increased interest in the possible antiobesity and antidiabetic properties of natural and synthetic vitamin A derivatives. However, whether vitamin A deficiency or aberrations in vitamin A metabolism contribute to the pathogenesis of diabetes is not known. This perspective article will review what is currently known and new data regarding the link between vitamin A and the clinical manifestations of common and atypical forms of diabetes.


diabetes; dietary nutrient; glucose metabolism; insulin; islets; pancreas; retinoic acid; retinol; vitamin A; β cells

PMID:  26535059 [PubMed]       PMCID: PMC4623591

Sci Rep. 2015 Nov 2;5:15893. doi: 10.1038/srep15893.

Obesity Leads to Tissue, but not Serum Vitamin A Deficiency.


Obesity negatively affects multiple metabolic pathways, but little is known about the impact of obesity on vitamin A (VA)[retinol (ROL)], a nutrient that regulates expression of genes in numerous pathways essential for human development and health. We demonstrate that obese mice, generated from a high fat diet (HFD) or by genetic mutations (i.e., ob/ob; db/db), have greatly reduced ROL levels in multiple organs, including liver, lungs, pancreas, and kidneys, even though their diets have adequate VA. However, obese mice exhibit elevated serum VA. Organs from obese mice show impaired VA transcriptional signaling, including reductions in retinoic acid receptor (RARα, RARβ2 and RARγ) mRNAs and lower intracellular ROL binding protein Crbp1 (RBP1) levels in VA-storing stellate cells. Reductions in organ VA signaling in obese mice correlate with increasing adiposity and fatty liver (steatosis), while with weight loss VA levels and signaling normalize. Consistent with our findings in obese mice, we show that increasing severity of fatty liver disease in humans correlates with reductions in hepatic VA, VA transcriptional signaling, and Crbp1 levels in VA storing stellate cells. Thus, obesity causes a "silent" VA deficiency marked by reductions in VA levels and signaling in multiple organs, but not detected by serum VA.

PMID:  26522079  [PubMed - in process]          PMCID:  PMC4629132            Free PMC Article

Oncotarget. 2015 Sep 15;6(27):24424-35.

Gene expression profiling signatures for the diagnosis and prevention of oral cavity carcinogenesis-genome-wide analysis using RNA-seq technology.


We compared the changes in global gene expression between an early stage (the termination of the carcinogen treatment and prior to the appearance of frank tumors) and a late stage (frank squamous cell carcinoma (SCC)) of tongue carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in a mouse model of human oral cavity and esophageal squamous cell carcinoma. Gene ontology and pathway analyses show that increases in "cell cycle progression" and "degradation of basement membrane and ECM pathways" are early events during SCC carcinogenesis and that changes in these pathways are even greater in the actual tumors. Myc, NFκB complex (NFKB1/RELA), and FOS transcription networks are the major transcriptional networks induced in early stage tongue carcinogenesis. Decreases in metabolism pathways, such as in "tricarboxylic acid cycle" and "oxidative phosphorylation", occurred only in the squamous cell carcinomas and not in the early stages of carcinogenesis. We detected increases in ALDH1A3, PTGS2, and KRT1 transcripts in both the early and late stages of carcinogenesis. The identification of the transcripts and pathways that change at an early stage of carcinogenesis provides potentially useful information for early diagnosis and for prevention strategies for human tongue squamous cell carcinomas.


RNA-seq; cancer diagnosis; squamous cell carcinoma; tongue lesions

PMID:  26110572  [PubMed - in process]       PMCID: PMC4695195            Free PMC Article

Alcohol Clin Exp Res. 2015 Aug;39(8):1360-72. doi: 10.1111/acer.12772.

Identification of Ethanol and 4-Nitroquinoline-1-Oxide Induced Epigenetic and Oxidative Stress Markers During Oral Cavity Carcinogenesis.



Head and neck squamous cell carcinoma (HNSCC) is a cancer that is characterized by its high morbidity and mortality rates. While tobacco use and alcohol consumption are 2 major contributing factors for HNSCC carcinogenesis, how the combination of tobacco and alcohol increases HNSCC risk is not understood.


We combined the 4-nitroquinoline-1-oxide (4-NQO) oral carcinogenesis and Meadows-Cook alcohol mouse models to elucidate the molecular events and to identify the novel biomarkers associated with oral cancer development.


By genome-wide RNA-seq of tongue samples (3 mice per group), we identified changes in transcripts that mediate alcohol metabolism and oxidative stress (Aldh2, Aldh1a3, Adh1, Adh7, and Cyp2a5) in mice treated with 4-NQO followed by ethanol (4-NQO/EtOH) as compared to the vehicle control/untreated (V.C./Untr.) samples. We measured major, global increases in specific histone acetylation and methylation epigenetic marks (H3K27ac, H3K9/14ac, H3K27me3, and H3K9me3) in the oral cavities of V.C./EtOH, 4-NQO/Untr., and 4-NQO/EtOH treatment groups compared to the V.C./Untr. group. We detected changes in histone epigenetic marks near regulatory regions of genes involved in ethanol metabolism by chromatin immunoprecipitation. For instance, the Aldh2 promoter showed increased H3K27me3 marks, and Aldh2 mRNA levels were reduced by 10-fold in 4NQO/EtOH versus V.C./Untr. tongue samples. 4-NQO/EtOH treatment also caused increases in markers of oxidative stress, including 4-HNE, MCT4/SLC16a3, and TOM20, as measured by immunohistochemistry.


We delineate a mechanism by which 4-NQO and ethanol can regulate gene expression during the development of HNSCC and suggest that histone epigenetic marks and oxidative stress markers could be the novel biomarkers and targets for the prevention of HNSCC.

Copyright © 2015 by the Research Society on Alcoholism.


Alcohol; Epigenetics; Head and Neck Cancer; Oxidative Stress; Tobacco

PMID:  26207766  [PubMed - indexed for MEDLINE]       PMCID:   PMC4597780  [Available on 2016-08-01]

Oncotarget. 2015 Mar 20;6(8):6040-52.

Initiation of esophageal squamous cell carcinoma (ESCC) in a murine 4-nitroquinoline-1-oxide and alcohol carcinogenesis model.


Esophageal squamous cell carcinomas (ESCCs) are very common, aggressive tumors, and are often associated with alcohol and tobacco abuse. Because ESCCs exhibit high recurrence rates and are diagnosed at late stages, identification of prognostic and drug targets for prevention and treatment is critical. We used the 4-nitroquinoline-1-oxide (4-NQO) murine model of oral carcinogenesis and the Meadows-Cook model of alcohol abuse to assess changes in the expression of molecular markers during the initial stages of ESCC. Combining these two models, which mimic chronic alcohol and tobacco abuse in humans, we detected increased cellular proliferation (EGFR and Ki67 expression), increased canonical Wnt signaling and downstream elements (β-catenin, FoxM1, and S100a4 protein levels), changes in cellular adhesive properties (reduced E-cadherin in the basal layer of the esophageal epithelium), and increased levels of phosphorylated ERK1/2 and p38. Additionally, we found that treatment with ethanol alone increased the numbers of epithelial cells expressing solute carrier family 2 (facilitated glucose transporter, member 1) (SLC2A1) and carbonic anhydrase IX (CAIX), and increased the phosphorylation of p38. Thus, we identified both 4-NQO- and ethanol-specific targets in the initial stages of esophageal carcinogenesis, which should lead to the development of potential markers and therapeutic targets for human ESCC.

KEYWORDS:  4-nitroquinoline-1-oxide; Meadows-Cook model of alcohol abuse; canonical and noncanonical Wnt signaling; cellular metabolism; esophageal squamous cell carcinoma

PMID:  25714027  [PubMed - indexed for MEDLINE]        PMCID:  PMC4467420

J Biol Chem. 2015 Jan 16;290(3):1456-73. doi: 10.1074/jbc.M114.616763. Epub 2014 Dec 1.

Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass.


We show that vitamin A (all-trans-retinol) (VA) is required both for the maintenance of pancreatic β-cell and α-cell mass and for glucose-stimulated insulin secretion in adult mice. Dietary VA deprivation (VAD) causes greatly decreased pancreatic VA levels, hyperglycemia, and reduced insulin secretion. Adult mice fed VAD diets display remodeling of the endocrine pancreas, marked β-cell apoptosis, shifts to smaller islet size distributions, decreased β-cell mass, increased α-cell mass, and hyperglucagonemia. Importantly, although we induced VAD in the entire animal, the pancreatic β-cells are exquisitely sensitive to VAD-associated apoptosis compared with other cell types in other organs. VAD causes major reductions in levels of the VA intracellular binding protein Crbp1 and the retinoic acid-metabolizing enzyme Cyp26a1 specifically in larger islets, suggesting the use of these proteins as biomarkers for early endocrine mass abnormalities. In the VAD mice, the reductions in pancreatic islet sizes and the associated aberrant endocrine functions, which show similarities to the phenotype in advanced type 2 diabetes, result from reductions in pancreatic VA signaling. Reintroduction of dietary VA to VAD mice restores pancreatic VA levels, glycemic control, normal islet size distributions, β-cell to α-cell ratios, endocrine hormone profiles, and RARβ2 and RARγ2 transcript levels. Restoration of β-cell mass by reintroducing VA to VAD mice does not involve increased β-cell proliferation or neogenesis. Pharmacologic modulation of pancreatic VA signaling should be explored for the preservation and/or restoration of pancreatic β-cell mass and function in individuals with diabetes mellitus.

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.


Beta Cells; Diabetes; Insulin; Pancreas; Retinoic Acid; Retinol; Type 2 Diabetes

PMID:  25451926   [PubMed - indexed for MEDLINE]        PMCID:  PMC4340394                Free PMC Article

Subcell Biochem. 2014;70:129-49. doi: 10.1007/978-94-017-9050-5_7.

The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes.


Epigenetics is "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being" as defined by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentiation. More than seven decades later we know that these mechanisms include histone tail post-translational modifications, DNA methylation, ATP-dependent chromatin remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful drugs targets, and combined targeting of multiple pathways is expected to significantly advance cancer therapy.

PMID:  24962884  [PubMed - indexed for MEDLINE]       PMCID:  PMC4199334             Free PMC Article

Exp Cell Res. 2014 Jan 1;320(1):128-43. doi: 10.1016/j.yexcr.2013.09.011. Epub 2013 Sep 25.

Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells.


To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes.

© 2013 Elsevier Inc. All rights reserved.


ChIP; Chromatin; Epigenetic silencing; GAPDH; GO; H3K27me3; HNSCC; HOX; HPRT1; Head and neck squamous cell carcinoma; Homeobox; OSCC; Oral squamous cell carcinoma; PRC; Polycomb; RA; RAR; RARE; RNA sequencing; RNA-seq; RNAseq; RXR; Retinoic acid; SCC; SUZ12; TNM; TNM classification of malignant tumours; Tumorigenesis; WCMC; Weill Cornell Medical College; chromatin immunoprecipitation; gene ontology; glyceraldehyde 3-phosphate dehydrogenase; head and neck squamous cell carcinoma; histone 3 lysine 27 trimethyl; homeobox; hypoxanthine phosphoribosyltransferase 1; oral squamous cell carcinoma; polycomb repressive complexes; qRT-PCR; quantitative real time polymerase chain reaction; retinoic acid; retinoic acid receptor; retinoic acid response element; retinoid X receptor; shRNA; short hairpin RNA; squamous cell carcinoma

PMID:  24076275  [PubMed - indexed for MEDLINE]            PMCID:  PMC3880227     Free PMC Article

Exp Cell Res. 2013 Aug 15;319(14):2196-204. doi: 10.1016/j.yexcr.2013.05.032. Epub 2013 Jun 10.

Deletion of retinoic acid receptor β (RARβ) impairs pancreatic endocrine differentiation.

All-trans retinoic acid (RA) signals via binding to retinoic acid receptors (RARs α, β, and γ). RA directly influences expression of Pdx1, a transcription factor essential for pancreatic development and beta-cell (β-cell) maturation. In this study we follow the differentiation of cultured wild-type (WT) vs. RARβ knockout (KO) embryonic stem (ES) cells into pancreatic islet cells. We found that RARβ KO ES cells show greatly reduced expression of some important endocrine markers of differentiated islet cells, such as glucagon, islet amyloid polypeptide (Iapp), and insulin 1 (Ins1) relative to WT. We conclude that RARβ activity is essential for proper differentiation of ES cells to pancreatic endocrine cells.

Copyright © 2013 Elsevier Inc. All rights reserved.


ES; Endocrine; Gcg; Iapp; Ins1; Islet cells; KO; Neurogenin3; Ngn3; Pancreas; RA; RAR; RARE; RARβ; Retinoic acid; Sst; Stem cell; WT; all-trans retinoic acid; embryonic stem; glucagon; insulin 1; islet amyloid polypeptide; knockout; retinoic acid receptor; retinoic acid response element; somatostatin; wild-type

PMID:  23756134  [PubMed - indexed for MEDLINE]        PMCID:  PMC3821387              Free PMC Article

Carcinogenesis. 2013 May;34(5):1158-64. doi: 10.1093/carcin/bgt021. Epub 2013 Jan 28.

Basal stem cells contribute to squamous cell carcinomas in the oral cavity.


The cells of origin of oral cavity squamous cell carcinoma (OCSCC) are unknown. We used a cell lineage tracing approach (adult K14-CreER(TAM); ROSA26 mice transiently treated with tamoxifen) to identify and track normal epithelial stem cells (SCs) in mouse tongues by X-gal staining and to determine if these cells become neoplastically transformed by treatment with a carcinogen, 4-nitroquinoline 1-oxide (4-NQO). Here, we show that in normal tongue epithelia, X-gal(+) cells formed thin columns throughout the entire epithelium 12 weeks after tamoxifen treatment, indicating that the basal layer contains long-lived SCs that produce progeny by asymmetric division to maintain homeostasis. Carcinogen treatment results in a ~10-fold reduction in the total number of X-gal(+) clonal cell populations and horizontal expansion of X-gal(+) clonal cell columns, a pattern consistent with symmetric division of some SCs. Finally, X-gal(+) SCs are present in papillomas and invasive OCSCCs, and these long-lived X-gal(+) SCs are the cells of origin of these tumors. Moreover, the resulting 4-NQO-induced tumors are multiclonal. These findings provide insights into the identity of the initiating cells of oral cancer.

PMID:  23358851  [PubMed - indexed for MEDLINE]       PMCID:  PMC3643419              Free PMC Article

Annu Rev Pathol. 2011;6:345-64. doi: 10.1146/annurev-pathol-011110-130303.

Retinoids, retinoic acid receptors, and cancer.


Retinoids (i.e., vitamin A, all-trans retinoic acid, and related signaling molecules) induce the differentiation of various types of stem cells. Nuclear retinoic acid receptors mediate most but not all of the effects of retinoids. Retinoid signaling is often compromised early in carcinogenesis, which suggests that a reduction in retinoid signaling may be required for tumor development. Retinoids interact with other signaling pathways, including estrogen signaling in breast cancer. Retinoids are used to treat cancer, in part because of their ability to induce differentiation and arrest proliferation. Delivery of retinoids to patients is challenging because of the rapid metabolism of some retinoids and because epigenetic changes can render cells retinoid resistant. Successful cancer therapy with retinoids is likely to require combination therapy with drugs that regulate the epigenome, such as DNA methyltransferase and histone deacetylase inhibitors, as well as classical chemotherapeutic agents. Thus, retinoid research benefits both cancer prevention and cancer treatment.

PMID:  21073338  [PubMed - indexed for MEDLINE]

J Nutr Biochem. 2010 Oct;21(10):975-82. doi: 10.1016/j.jnutbio.2009.07.012. Epub 2009 Dec 1.

Oral carcinogenesis induced by 4-nitroquinoline 1-oxide in lecithin:retinol acyltransferase gene knockout mice.


Lecithin:retinol acyltransferase (LRAT) regulates retinol (vitamin A) metabolism by esterifying retinol. LRAT expression is decreased in cultured human squamous cell carcinoma cells of the head and neck relative to normal epithelial cells. We investigated whether the carcinogen 4-nitroquinoline 1-oxide (4-NQO) induced a higher incidence of oral cancer in LRAT knockout (LRAT(-/-)) than in wild-type (Wt) mice. We also investigated retinol deprivation during 4-NQO treatment in LRAT(-/-) mice as a model for rapid retinol deficiency. We observed higher levels of secreted frizzled-related protein (Sfrp) 2, an inhibitor of WNT signaling, in tongue tumors in LRAT(-/-) versus Wt. LRAT(-/-) embryonic stem cells also expressed higher Sfrp2 transcripts, indicating an interaction between retinol and WNT signaling. Cox-2, Cyclin D1, p21, Trop2 and RARβ2 were not differentially expressed in Wt versus LRAT(-/-) tongue tumors. Wt and LRAT(-/-) mice fed a retinol-sufficient diet showed the same oral tumor incidence after 4-NQO treatment. In contrast, tongue tumors developed in 60% of Wt mice and in 100% of LRAT(-/-) mice fed a retinol-deficient diet during 4-NQO treatment (P=.22); moreover, the bromodeoxyuridine labeling index was 21.0 ± 2.4% in LRAT(-/-) normal tongue epithelium as compared to 9.9 ± 0.8% in Wt normal tongue epithelium (P<.001). Thus, partial retinol deficiency during carcinogen treatment (achieved in LRAT(-/-)) resulted in more proliferating cells in tongue epithelia from LRAT(-/-) mice and, ultimately, a greater probability of carcinogenesis.

Copyright © 2010 Elsevier Inc. All rights reserved.

PMID:  19954945  [PubMed - indexed for MEDLINE]      PMCID:  PMC2941705        Free PMC Article

Cancer Prev Res (Phila). 2009 Dec;2(12):1100-10. doi: 10.1158/1940-6207.CAPR-09-0136. Epub 2009 Dec 1.

A DNA methyltransferase inhibitor and all-trans retinoic acid reduce oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide.


The transcriptional silencing of some cell cycle inhibitors and tumor suppressors, such as p16 and retinoic acid receptor beta(2), by DNA hypermethylation at CpG islands is commonly found in human oral squamous carcinoma cells. We examined the effects of the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza; 0.25 mg/kg body weight), all-trans retinoic acid (RA; given at 100 microg/kg body weight and 1 mg/kg body weight), and the combination of 5-Aza and the low-dose RA on murine oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in a mouse model. All the drug treatments were done for 15 weeks after a 10-week 4-NQO treatment. Mice in all drug treatment groups showed decreases in the average numbers of neoplastic tongue lesions. The combination of 5-Aza and RA effectively attenuated tongue lesion severity. Although all drug treatments limited the increase in the percentage of proliferating cell nuclear antigen-positive cells and the decrease in the percentage of p16-positive cells caused by the 4-NQO treatment in mouse tongue epithelial regions without visible lesions and in the neoplastic tongue lesions, the combination of 5-Aza and RA was the most effective. Collectively, our results show that the combination of a DNA demethylating drug and RA has potential as a strategy to reduce oral cavity cancer in this 4-NQO model.

PMID:  19952362  [PubMed - indexed for MEDLINE]         PMCID:  PMC2877493              Free PMC Article